Exercise 3 (Homework 7).
(P,
NP,
coNP)
Closure properties of \mathsf{P}, \mathsf{NP} and \mathsf{coNP}
The goal of this exercise is to revise some closure properties of \mathsf{P}, \mathsf{NP}, and \mathsf{coNP}.
- (closure w.r.t union) Prove the following implications
- Given A and B in \mathsf{P}, A\cup B\in \mathsf{P}.
- Given A and B in \mathsf{NP}, A\cup B\in \mathsf{NP}.
- Given A and B in \mathsf{coNP}, A\cup B\in \mathsf{coNP}.
- (closure w.r.t intersection) Prove the following implications
- Given A and B in \mathsf{P}, A\cap B\in \mathsf{P}.
- Given A and B in \mathsf{NP}, A\cap B\in \mathsf{NP}.
- Given A and B in \mathsf{coNP}, A\cap B\in \mathsf{coNP}.
- (closure w.r.t concatenation) Prove the following implications
- Given A and B in \mathsf{P}, A\cdot B\in \mathsf{P}.
- Given A and B in \mathsf{NP}, A\cdot B\in \mathsf{NP}.
- Given A and B in \mathsf{coNP}, A\cdot B\in \mathsf{coNP}.